Experimental characterization of graphene by electrostatic resonance frequency tuning
نویسندگان
چکیده
منابع مشابه
Electrostatic deposition of graphene.
Loose graphene sheets, one to a few atomic layers thick, are often observed on freshly cleaved HOPG surfaces. A straightforward technique using electrostatic attraction is demonstrated to transfer these graphene sheets to a selected substrate. Sheets from one to 22 layers thick have been transferred by this method. One sheet after initial deposition is measured by atomic force microscopy to be ...
متن کاملElectrostatic tuning of cellular excitability.
Voltage-gated ion channels regulate the electric activity of excitable tissues, such as the heart and brain. Therefore, treatment for conditions of disturbed excitability is often based on drugs that target ion channels. In this study of a voltage-gated K channel, we propose what we believe to be a novel pharmacological mechanism for how to regulate channel activity. Charged lipophilic substanc...
متن کاملElectrostatic graphene loudspeaker
Graphene has extremely low mass density and high mechanical strength, and key qualities for efficient wide-frequency-response electrostatic audio speaker design. Low mass ensures good high frequency response, while high strength allows for relatively large free-standing diaphragms necessary for effective low frequency response. Here, we report on construction and testing of a miniaturized graph...
متن کاملTuning the resonance frequency of Ag-coated dielectric tips.
A finite element model was built to investigate how to optimize localized plasmon resonances of an Ag-coated dielectric tip for tip-enhanced Raman spectroscopy (TERS). The relation between the resonance frequency, the electric field enhancement and the optical constant of the dielectric tip was numerically investigated. The results show that increasing the refractive index of the dielectric tip...
متن کاملNanotribological surface characterization by frequency modulated torsional resonance mode AFM
The aim of this work is to develop an experimental method to measure in-plane surface properties on the nanometer scale by torsional resonance mode atomic force microscopy and to understand the underlying system dynamics. The invention of the atomic force microscope (AFM) and the advances in development of new AFM based techniques have significantly enhanced the capability to probe surface prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2017
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.4999682